24 research outputs found

    Structural Parameterizations of Feedback Vertex Set

    Get PDF
    A feedback vertex set in an undirected graph is a subset of vertices whose removal results in an acyclic graph. It is well-known that the problem of finding a minimum sized (or k sized in case of decision version of) feedback vertex set (FVS) is polynomial time solvable in (sub)-cubic graphs, in pseudo-forests (graphs where each component has at most one cycle) and mock-forests (graph where each vertex is part of at most one cycle). In general graphs, it is known that the problem is NP-Complete, and has an O*((3.619)^k) fixed-parameter algorithm and an O(k^2) kernel where k, the solution size is the parameter. We consider the parameterized and kernelization complexity of feedback vertex set where the parameter is the size of some structure of the input. In particular, we show that * FVS is fixed-parameter tractable, but is unlikely to have polynomial sized kernel when parameterized by the number of vertices of the graph whose degree is at least 4. This answers a question asked in an earlier paper. * When parameterized by k, the number of vertices, whose deletion results in a pseudo-forest, we give an O(k^6) vertices kernel improving from the previously known O(k^{10}) bound. * When parameterized by the number k of vertices, whose deletion results in a mock-d-forest, we give a kernel consisting of O(k^{3d+3}) vertices and prove a lower bound of Omega(k^{d+2}) vertices (under complexity theoretic assumptions). Mock-d-forest for a constant d is a mock-forest where each component has at most d cycles

    Parameterized Complexity of Deletion to Scattered Graph Classes

    Get PDF
    Graph-modification problems, where we add/delete a small number of vertices/edges to make the given graph to belong to a simpler graph class, is a well-studied optimization problem in all algorithmic paradigms including classical, approximation and parameterized complexity. Specifically, graph-deletion problems, where one needs to delete at most k vertices to place it in a given non-trivial hereditary (closed under induced subgraphs) graph class, captures several well-studied problems including Vertex Cover, Feedback Vertex Set, Odd Cycle Transveral, Cluster Vertex Deletion, and Perfect Deletion. Investigation into these problems in parameterized complexity has given rise to powerful tools and techniques. While a precise characterization of the graph classes for which the problem is fixed-parameter tractable (FPT) is elusive, it has long been known that if the graph class is characterized by a finite set of forbidden graphs, then the problem is FPT. In this paper, we initiate a study of a natural variation of the problem of deletion to scattered graph classes where we need to delete at most k vertices so that in the resulting graph, each connected component belongs to one of a constant number of graph classes. A simple hitting set based approach is no longer feasible even if each of the graph classes is characterized by finite forbidden sets. As our main result, we show that this problem (in the case where each graph class has a finite forbidden set) is fixed-parameter tractable by a O^*(2^(k^O(1))) algorithm, using a combination of the well-known techniques in parameterized complexity - iterative compression and important separators. Our approach follows closely that of a related problem in the context of satisfiability [Ganian, Ramanujan, Szeider, TAlg 2017], where one wants to find a small backdoor set so that the resulting CSP (constraint satisfaction problem) instance belongs to one of several easy instances of satisfiability. While we follow the main idea from this work, there are some challenges for our problem which we needed to overcome. When there are two graph classes with finite forbidden sets to get to, and if one of the forbidden sets has a path, then we show that the problem has a (better) singly exponential algorithm and a polynomial sized kernel. We also design an efficient FPT algorithm for a special case when one of the graph classes has an infinite forbidden set. Specifically, we give a O^*(4^k) algorithm to determine whether k vertices can be deleted from a given graph so that in the resulting graph, each connected component is a tree (the sparsest connected graph) or a clique (the densest connected graph)

    Faster FPT Algorithms for Deletion to Pairs of Graph Classes

    Get PDF

    Polynomial-delay Enumeration Kernelizations for Cuts of Bounded Degree

    Full text link
    Enumeration kernelization was first proposed by Creignou et al. [TOCS 2017] and was later refined by Golovach et al. [JCSS 2022] into two different variants: fully-polynomial enumeration kernelization and polynomial-delay enumeration kernelization. In this paper, we consider the d-CUT problem from the perspective of (polynomial-delay) enumeration kenrelization. Given an undirected graph G = (V, E), a cut F = E(A, B) is a d-cut of G if every u in A has at most d neighbors in B and every v in B has at most d neighbors in A. Checking the existence of a d-cut in a graph is a well-known NP-hard problem and is well-studied in parameterized complexity [Algorithmica 2021, IWOCA 2021]. This problem also generalizes a well-studied problem MATCHING CUT (set d = 1) that has been a central problem in the literature of polynomial-delay enumeration kernelization. In this paper, we study three different enumeration variants of this problem, ENUM d-CUT, ENUM MIN-d-CUT and ENUM MAX-d-CUT that intends to enumerate all the d-cuts, all the minimal d-cuts and all the maximal d-cuts respectively. We consider various structural parameters of the input and provide polynomial-delay enumeration kernels for ENUM d-CUT and ENUM MAX-d-CUT and fully-polynomial enumeration kernels of polynomial size for ENUM MIN-d-CUT.Comment: 25 page

    Kernels for Structural Parameterizations of Vertex Cover - Case of Small Degree Modulators

    Get PDF
    Vertex Cover is one of the most well studied problems in the realm of parameterized algorithms and admits a kernel with O(l^2) edges and 2*l vertices. Here, l denotes the size of a vertex cover we are seeking for. A natural question is whether Vertex Cover admits a polynomial kernel (or a parameterized algorithm) with respect to a parameter k, that is, provably smaller than the size of the vertex cover. Jansen and Bodlaender [STACS 2011, TOCS 2013] raised this question and gave a kernel for Vertex Cover of size O(f^3), where f is the size of a feedback vertex set of the input graph. We continue this line of work and study Vertex Cover with respect to a parameter that is always smaller than the solution size and incomparable to the size of the feedback vertex set of the input graph. Our parameter is the number of vertices whose removal results in a graph of maximum degree two. While vertex cover with this parameterization can easily be shown to be fixed-parameter tractable (FPT), we show that it has a polynomial sized kernel. The input to our problem consists of an undirected graph G, S subseteq V(G) such that |S| = k and G[V(G)S] has maximum degree at most 2 and a positive integer l. Given (G,S,l), in polynomial time we output an instance (G\u27,S\u27,l\u27) such that |V(G\u27)|<= O(k^5), |E(G\u27)|<= O(k^6) and G has a vertex cover of size at most l if and only if G\u27 has a vertex cover of size at most l\u27. When G[V(G)S] has maximum degree at most 1, we improve the known kernel bound from O(k^3) vertices to O(k^2) vertices (and O(k^3) edges). In general, if G[V(G)S] is simply a collection of cliques of size at most d, then we transform the graph in polynomial time to an equivalent hypergraph with O(k^d) vertices and show that, for d >= 3, a kernel with O(k^{d-epsilon}) vertices is unlikely to exist for any epsilon >0 unless NP is a subset of coNO/poly

    Towards Better Understanding of User Authorization Query Problem via Multi-variable Complexity Analysis

    Get PDF
    User authorization queries in the context of role-based access control have attracted considerable interest in the last 15 years. Such queries are used to determine whether it is possible to allocate a set of roles to a user that enables the user to complete a task, in the sense that all the permissions required to complete the task are assigned to the roles in that set. Answering such a query, in general, must take into account a number of factors, including, but not limited to, the roles to which the user is assigned and constraints on the sets of roles that can be activated. Answering such a query is known to be NP-hard. The presence of multiple parameters and the need to find efficient and exact solutions to the problem suggest that a multi-variate approach will enable us to better understand the complexity of the user authorization query problem (UAQ). In this paper, we establish a number of complexity results for UAQ. Specifically, we show the problem remains hard even when quite restrictive conditions are imposed on the structure of the problem. Our FPT results show that we have to use either a parameter with potentially quite large values or quite a restricted version of UAQ. Moreover, our second FPT algorithm is complex and requires sophisticated, state-of-the-art techniques. In short, our results show that it is unlikely that all variants of UAQ that arise in practice can be solved reasonably quickly in general.Comment: Accepted for publication in ACM Transactions on Privacy and Security (TOPS

    Constrained Hitting Set Problem with Intervals

    Get PDF

    Finding a Highly Connected Steiner Subgraph and its Applications

    Get PDF
    Given a (connected) undirected graph G, a set X ? V(G) and integers k and p, the Steiner Subgraph Extension problem asks whether there exists a set S ? X of at most k vertices such that G[S] is a p-edge-connected subgraph. This problem is a natural generalization of the well-studied Steiner Tree problem (set p = 1 and X to be the terminals). In this paper, we initiate the study of Steiner Subgraph Extension from the perspective of parameterized complexity and give a fixed-parameter algorithm (i.e., FPT algorithm) parameterized by k and p on graphs of bounded degeneracy (removing the assumption of bounded degeneracy results in W-hardness). Besides being an independent advance on the parameterized complexity of network design problems, our result has natural applications. In particular, we use our result to obtain new single-exponential FPT algorithms for several vertex-deletion problems studied in the literature, where the goal is to delete a smallest set of vertices such that: (i) the resulting graph belongs to a specified hereditary graph class, and (ii) the deleted set of vertices induces a p-edge-connected subgraph of the input graph
    corecore